Pages

Wednesday, 17 October 2018

ASA Cluster Setup

Clustering's main advantage in relation to the ASA's is the boot in throughput. It's typically employed in data centres and larger enterprise networks. However it's important to note that this does come at a cost - this is because by clustering you limit the feature set.

Clustering is now supported on the 5500 series (5512 and above) from IOS 9.2+. However you might need to upgrade your license (for free) in order to 'unlock' the functionality.

For this topology we will be using spanned etherchannel mode. Spanned etherchannels allow the ASA cluster to present a single IP address (the master nodes IP) - however with the exception of the management interface that will operate as a induvidual interface on each ASA (this comes in very useful when troubleshooting.)

We'll firstly configure this on our ASA's:

ASA1> cluster interface-mode spanned
ASA2> cluster interface-mode spanned

Note: A reboot may be required at this aferwards.

When configuring our managed interface we will need to create an IP pool so that the cluster master node can allocate an management IP to each member:

ip local pool MGMT_POOL 10.0.18.97-10.0.18.99

and then configure our management intefaces on the master node:

Note: The IP pool we created earlier is used to allocate induvidual IP's to each management interface in the cluster - while the explicit IP defined on the interface configuration below is the main cluster IP (i.e. the shared one.)

ASA1> interface m0/0
management-only
nameif management-pri
security-level 0
ip add 10.0.18.100 255.255.255.0 cluster-pool MGMT_POOL
no shutdown

http server enable
http 10.0.18.0 255.255.255.0 management-pri
ssh 10.0.18.0 255.255.255.0 management-pri

Next we will configure the data links (i.e. all of the traffic you wish to serve) - to do this we will setup a spanned etherchannel. This translates to an etherchannel spanning over all of the ASA's (i.e. all ASA's are connected together with a single channel group. We'll use two physical ports on each ASA for this example:

ASA1) int po10
port-channel span-cluster
vlan 1000
no shut

int gi0/1
channel-group 10 mode active
no shut

int gi0/2
channel-group 10 mode active
no shut

We'll be serving three client VLANs - so we'll setup the trunking:

int po10.100
description InsideNetwork
vlan 100
nameif inside
security-level 100
no shut

int po10.101
description OutsidePrimary
vlan 101
nameif outside1
security-level 0
no shut

int po10.102
description OutsideBackup
vlan 102
nameif outside2
security-level 0
no shut

Note if you are connecting the etherchannel to a vPC (Cisco Nexus technology) or a VSS (Cisco Catalyst 6500/6800 technology) you'd need to ammend as follows:
ASA1) int gi0/1
channel-group 10 mode active vss-id 1
port-channel span-cluster vss-load-balance

int gi0/2
channel-group 10 mode active vss-id 2
port-channel span-cluster vss-load-balance

Note: We don't need to apply this configuration on the slave switch as the settings will automatically propogate when the CCL is established.

The backend switch stack was a 3650X - for completeness I have included the other side of the spanned etherchannels mentioned above:

SWITCH-STACK> do show run ...

interface Port-channel10
 switchport trunk native vlan 1000
 switchport trunk allowed vlan 100-102
 switchport mode trunk

interface GigabitEthernet1/0/1
 switchport trunk native vlan 1000
 switchport trunk allowed vlan 100-102
 switchport mode trunk
 switchport nonegotiate
 storm-control broadcast level 10.00
 storm-control action trap
 no cdp enable
 channel-protocol lacp
 channel-group 10 mode active

interface GigabitEthernet1/0/2
 switchport trunk native vlan 1000
 switchport trunk allowed vlan 100-102
 switchport mode trunk
 switchport nonegotiate
 storm-control broadcast level 10.00
 storm-control action trap
 no cdp enable
 channel-protocol lacp
 channel-group 10 mode active

interface GigabitEthernet2/0/1
 switchport trunk native vlan 1000
 switchport trunk allowed vlan 100-102
 switchport mode trunk
 switchport nonegotiate
 storm-control broadcast level 10.00
 storm-control action trap
 no cdp enable
 channel-protocol lacp
 channel-group 10 mode active

interface GigabitEthernet2/0/2
 switchport trunk native vlan 1000
 switchport trunk allowed vlan 100-102
 switchport mode trunk
 switchport nonegotiate
 storm-control broadcast level 10.00
 storm-control action trap
 no cdp enable
 channel-protocol lacp
 channel-group 10 mode active

We'll now configure the cluster control links - these are setup in a *device local* etherchannel (i.e. ASA1 --> SW1,SW2 over po1, and ASA2 --> SW1,SW2 over po2.)

As per Cisco's guidance we should try our best to ensure that the CCLs (Cluster Control Links) can handle the same throughput as the data links. By doing this we can ensure failover can happen quickly during congestion.

ASA1> int gi0/4
description Cluster Control Link
channel-group 11 mode active
no shut

int gi0/5
description Cluster Control Link
channel-group 11 mode active
no shut

int po11
description Cluster Control Link
no shut

Again for completeness I have included the backend switch configuration:

int range gi1/0/23,gi2/0/23
desc ASA Primary CCL
channel-protocol lacp
channel-group 11 mode active

int po11
desc ASA Primary CCL
switchport mode access
switchport access vlan 300
no shut

int range gi1/0/24,gi2/0/24
desc ASA Backup CCL
channel-protocol lacp
channel-group 12 mode active

int po12
desc ASA Backup CCL
switchport mode access
switchport access vlan 300
no shut

We're now in a position to enable the cluster - we should do this on our primary ASA firstly:

cluster group HLXCluster
local-unit ASA-Primary
cluster-interface po11 ip 192.168.120.1 255.255.255.252
priority 1
key str0ngp@55word!
enable

Note: The cluster member with the lowest 'priority' will become the master.

To confirm run: sh cluster info

and then the secondary:

cluster group HLXCluster
local-unit ASA-Secondary
cluster-interface po11 ip 192.168.120.2 255.255.255.252
priority 100
key str0ngp@55word!
enable

and finally to confirm run (again):

sh cluster info

Sources

Chapter: Configuring a Cluster of ASAs

No comments:

Post a Comment